This document contains the administrative and academic regulations that are specific for the Medical Neuroscience Graduate Program. This Handbook supplements, but is subordinate to, the Indiana University School of Medicine Graduate School Policy Handbook.
TABLE OF CONTENTS

1 PROGRAM HISTORY
  1.1 Objectives
  1.2 Program History
  1.3 Mission Statement

2 ADMINISTRATION
  2.1 Director, Medical Neuroscience Graduate Program
  2.2 Co-Director, Medical Neuroscience Graduate Program
  2.3 Program Office and Staff
  2.4 Training and Advisory Committee (TAC)

3 GRADUATE STUDENT BENEFITS AND OBLIGATIONS
  3.1 Graduate Stipend and Benefits
  3.2 Time Off and Leave of Absence Policy

4 MEDICAL NEUROSCIENCES PROGRAM REQUIREMENTS
  4.1 Program Admission Tracks
  4.2 Faculty Advising for Students Joining from IBMG and MSTP Programs
  4.3 Research Rotations Prior to Joining Medical Neuroscience PhD Program
      4.3.1 Laboratories Available for Rotations and Mentoring of Students
  4.4 Ph.D in Medical Neuroscience Program Curriculum
      4.4.1 Required Coursework
      4.4.2 Elective Courses
      4.4.3 Required Minor
  4.5 Grade/Credit Hours
  4.6 Academic Probation
  4.7 Seminars
  4.8 Scientific Presentations

5 PROGRESS TOWARDS THE DEGREE
  5.1 Appointment of Major Advisor
  5.2 Extracurricular Obligations
  5.3 Thesis Research Advisory Committee (TRAC)
  5.4 Time to Degree
  5.5 Student Academic Progress
  5.6 Individual Development Plan

6 QUALIFYING EXAMINATION
  6.1 Overview
  6.2 Examination Committee
  6.3 Qualifying Examination - Written
  6.4 Qualifying Examination- Oral Proposal Defense

7 DISSERTATION PROPOSAL AND DEFENSE
  7.1 Publication requirement
7.2 Dissertation proposal and Defense
7.3 The Ph.D. Final Examination (Defense)

8 FORMS
8.1 Phase 1: From Student's Matriculation to Qualifying Exam
8.2 Phase 2: From Student's Qualifying Exam to Graduation
8.3 Miscellaneous Forms
8.4 Useful Links

9 CODE OF CONDUCT
9.1 IU Code of Conduct
9.2 IUSM Honor Code
9.3 IUSM Exemplar of Professionalism Honor Roll
1 PROGRAM OVERVIEW

1.1 Objectives
The Medical Neuroscience Graduate Program provides advanced study for academic, research, and industry careers in neuroscience, with an emphasis on the translation of basic science discoveries into clinical practice. Students receive broad, interdisciplinary training in neuroscience with a strong foundation in core concepts, skills, methodologies, and advanced comprehension of the scientific literature. Students undertake a core curriculum that encompasses multiple levels of study, including molecular mechanisms, cells, systems, behavior, translational neuroscience, and diseases of the nervous system. The Medical Neurosciences program is administered by the Stark Neuroscience Research Institute (SNRI) and provides research training with expertise that includes, but is not limited to: pain and neurosensory systems; spinal cord and brain injury and repair; the cellular, molecular, and behavioral correlates of addiction; the neurobiology and neurodegenerative disorders.

The program is designed to integrate essential skills for successful, independent research careers in neuroscience. These include critical thinking and reasoning, and training in ethics. Admission is limited to applicants for the degree of Doctor of Philosophy in Neuroscience.

1.2 Program History
The Medical Neuroscience Graduate Program (originally named Medical Neurobiology) began in 1984 at the Institute of Psychiatric Research (IPR; established in 1956 at the Indiana University School of Medicine campus). The faculty and staff at the IPR were a source of notable contributions to neuroscience, such as the demonstration of glycine as a neurotransmitter, the development of the serotonin hypothesis of depression, the establishment of genetic and biochemical substrates of alcoholism, accrual of the largest sample of bipolar families for genetic studies, and the development of canonical animal models of anxiety and alcoholism. In 2003, the Paul and Carole Stark Neurosciences Research Institute (SNRI) was created through a generous $15 million endowment that greatly expanded the neuroscience community at IUSM. At this time, the graduate program was renamed to Medical Neuroscience, and the SNRI was established as the administrative home to the MedNeuro Ph.D. training program. The SNRI is housed in the Neuroscience Research Building (NB), a state-of-the-art research facility that opened in 2014. NB is physically linked to Goodman Hall, which houses the IUSM outpatient clinical neuroscience departments, the Indiana Alzheimer Disease Center, and the Indiana University Center for Neuroimaging. This close proximity of clinical and basic neuroscience faculty is a key strength of the SNRI and the Medical Neuroscience program, which strive to facilitate translational collaborations that utilize cutting edge concepts and technologies.

1.3 Mission Statement
The primary mission of the SNRI is carry out basic and translational research leading to new therapies for diseases of the nervous system. We wish develop a nationally competitive graduate program in the neurosciences and provide a high quality trained workforce to support a robust and diverse research in basic science and clinical research at the SNRI. Moreover, we aim to provide a broad based educational experience to prepare our students for a diverse range of scientific careers and provide them with the communication and reasoning skills to allow them to thrive professionally.
2 ADMINISTRATION

2.1 Director:
Gary Landreth, Ph.D.
Director, Medical Neuroscience Graduate Program
Stark Neurosciences Research Institute
Indiana University School of Medicine
Department of Anatomy and Cell Biology
320 W. 15th Street, NB-214C
Indianapolis, IN 46202
Phone: (317) 278-7820
Email: glandret@iu.edu

2.2 Co-Director:
Karmen Yoder, Ph.D.
Co-Director, Medical Neuroscience Graduate Program
Stark Neurosciences Research Institute
Indiana University School of Medicine
Radiology and Imaging Sciences
355 W. 16th Street, GH-4091
Indianapolis, IN 46202
Phone: (317) 963-7507
Email: kkyoder@iupui.edu

2.3 Administrative Office
The Medical Neuroscience Graduate Program is located in the Stark Neurosciences Research Institute, Suite 214 of the Neurosciences Research Building. The Program Coordinator administers the program and maintains all files relevant to the Graduate Program. Questions regarding pay, mail, registration, student files, and general inquiries may be directed to the coordinator. Students needing to obtain Graduate School forms and/or who have questions about the forms also may contact the Program Coordinator.

Rene Baugh, MA
Education Program Coordinator, Medical Neuroscience Graduate Program
Stark Neurosciences Research Institute
Indiana University School of Medicine
320 West 15th Street, Suite 214
Neurosciences Research Building
Indianapolis, IN 46202-2266
Office: (317) 278-5810
Email: rbaugh@iu.edu
2.4 Training and Advisory Committee (TAC)
The Training & Advisory Committee (TAC) is responsible for the oversight and administration of the Medical Neuroscience program. The TAC is comprised of SNRI-affiliated faculty representing the various departmental and institutional participants in the program, as well as a student representative. The committee is chaired by the Program Director.

Specifically, the TAC oversees the:

- The overall structure of the program and programmatic goals
- The curriculum of the program, including core required courses, electives, and other career development and training opportunities for students and SNRI post-doctoral fellows and faculty.
- Monitor student academic progress and intervene when necessary to mediate/resolve issues that arise which could interfere with the learning environment and/or prohibit progression to candidacy or successful completion and defense of the dissertation.
- Review award applications and select students to receive Stark Scholar Fellowship Awards, the Larry Kays Award, and SNRI travel awards

MedNeuro Training & Advisory Committee (TAC) Members

Chair, Gary Landreth, Ph.D.  Email: glandret@iu.edu
Co-Chair, Karmen Yoder, Ph.D.  Email: kkyoder@iupui.edu
Liana Apostolova, M.D.   Email: lapostol@iu.edu
AJ Baucum, Ph.D.    Email: ajbaucum@iupui.edu
Michelle L. Block, Ph.D.   Email: mlblock@iupui.edu
William (Bill) Truitt, Ph.D.   Email: btruitt@iu.edu
Adrian Oblak, Ph.D.    Email: aoblak@iupui.edu
Xavier Taylor (student rep, 2019/20) Email: xtaylor@iu.edu

3 GRADUATE STUDENT BENEFITS AND OBLIGATIONS

3.1 Graduate Stipend and Benefits
Beginning in August and thereafter, full-time registered MedNeuro students are eligible for tuition, stipend and health care, which are the responsibility of the student’s mentor and the IUSM department in which the mentor has a primary appointment. The stipend level is $29,000 for twelve months for the 2019-2020 academic school year. During this time, students are typically paid through University Payroll and stipends are typically paid at the end of the month. For example, for an IBMG student who started the program in August 2018, July 2019 would be the last stipend from the IUSM Graduate Division, which is paid at the beginning of the month. In August 2019, stipends paid by faculty, through the respective department, would be dispersed at the end of the month. Students should plan their finances accordingly to cover the apparent “gap” caused by this change in stipend disbursement cycle. Please note that, in most cases, University Payroll will withhold taxes and students will receive tax forms at the end of the year. Some private external fellowships may not withhold taxes. Students are responsible for understanding the tax laws and planning accordingly. Upon entrance into the laboratory of the selected research mentor (i.e., year 2 of graduate school), student stipends should be funded by NIH training grants, NIH individual research grants, other federal grant sources, private foundation research grants, or other University resources. Graduate Students must be engaged full-time in program-related activities. Outside employment is not allowed.
3.2 Time Off and Leave of Absence Policy
Students do not accrue time off. Vacations should not exceed 2 weeks total in a given fiscal year. Vacation/time off needs to be approved by the Research Mentor/Major Advisor and should not interfere with required coursework nor any fellowship requirements. Any additional leave of absence (LOA) needs to be approved in advance by the Research Mentor/Major Advisor. If there are disputes between the student and Research Mentor/Major Advisor with respect to the need for an LOA, the TAC committee is available to render a final decision on the necessity of the LOA. However, leaves of absence from the graduate program are not automatically approved. Stipends may be discontinued during any extended leave. Medical LOAs require approval of the Associate Dean for Graduate studies, IUSM Graduate Office, and must meet other requirements set forth in the Indiana Biomedical Gateway (IBMG) program for Graduate Student Medical Leave of Absence policy.

4 MEDICAL NEUROSCIENCES PROGRAM REQUIREMENTS

4.1 Program Admission Tracks
There are three different routes by which students can join the PhD in Medical Neuroscience (MedNeuro) program:

- **Traditional Ph.D. Track**
  Medical Neuroscience works in conjunction with the Indiana Biomedical Gateway (IBMG) program, which provides a shared first-year academic experience for all biomedical science PhD students. Students officially enter the MedNeuro program at the beginning of the second year of the program; however, the core course, G780 (Foundations of Neuroscience), is offered each Spring and should be taken during the first year of coursework. Additional coursework includes rotations, a required minor, and electives that are relevant to the final thesis work. Each student has a mentor (Major Advisor) and an Advisory Committee to assist in creation of a personalized curriculum that supports the planned thesis work.

- **MSTP Students (MD/Ph.D.) Track**
  Students enrolled in the MSTP program are required to take G780 (Foundations of Neuroscience). Entering MSTP students may transfer as many as 30 credit hours from the MD curriculum to satisfy minor or elective requirements. Medical Students can obtain the Conversion Credit form from their MD advisor. The forms should be submitted to the Program Coordinator for evaluation. Upon entering the program students will take the required MedNeuro classes and elective courses relevant to their thesis work in consultation with their Research Mentor/Major Advisor and the Program Directors/Training and Advisory Committee.

- **Direct Admission Track**
  The Medical Neurosciences Program can admit students directly to the program. The Stark Neurosciences Research Institute (SNRI) is responsible for the stipend, tuition, and insurance costs during the student’s first year. This mechanism is most frequently used for students transferring from other institutions. Students can also apply for this track if sponsored by an outside organization/employer. Program Administration can help with transfer credit evaluation, coursework and qualification exam requirements for the student (along with chosen mentor), and the overall transition into the program.
4.2 Advising for Students Joining From IBMG and MSTP programs
Prior to joining the MedNeuro PhD program, students will follow the advising instructions provided by the PhD program through which they were admitted. For students in the IBMG first year experience, students should follow the instructions in the IBMG Handbook related to advising. For students in the MSTP program, please consult the MSTP Program Directors for advising and guidance.

4.3 Research Rotations Prior to Joining the PhD in Medical Neuroscience Program
All pre-doctoral trainees in the program are required to engage in three structured research rotations in laboratories of participating faculty prior to admission to PhD candidacy. For those admitted through the IBMG Program for PhD Study, or the Direct Admission Tracks, rotations (GRDM-G718) are scheduled as 8-week assignments, for which 2 credit hours are earned for each rotation. It is expected that each student will spend a minimum of 20 hours per week in the lab during a rotation. For students admitted through the MSTP combined MD/PhD track, rotations (GRDM-G803) take place in the summers before their MS1, MS2, and GS1 years. Each rotation provides sufficient time for the trainee to become familiar with the conceptual underpinnings of potential research projects, methods used in the laboratory, and to evaluate the suitability and compatibility of the laboratory environment for conducting dissertation research.

4.3.1 Laboratories Available for Rotations and Mentoring of Students
Both primary and secondary Faculty will be asked to respond during the Spring semester to verify their interest in taking a graduate student in the next academic year. The annual survey is used to provide a list of available labs to the students in the matriculating class.

IBMG students will be provided with a list of faculty who have open positions in their laboratories and will accept rotation students. The students then contact the faculty directly or consult with the Program Directors to arrange a rotation. It is expected that the student will provide a written report, and in some cases may be asked to have an oral presentation, at the end of the rotation. A copy of the written report should be submitted to the Program Administrator for inclusion in the student’s file.

After completing three rotations, the student will identify a laboratory for their thesis research and discuss with the faculty mentor whether a placement is possible. In the event a student cannot be placed after 3 rotations, a fourth rotation can be arranged in consultation with the Program Directors.

Ph.D. students must be given sufficient time to participate in all training activities, including, but not limited to: preparation time for required examinations, attendance at Seminars, attendance at external speaker lunches, attendance of journal clubs, active participation in the Graduate Student Symposium and other local Neuroscience meetings (e.g., Gill Symposium, Greater Indiana Society for Neuroscience), student-sponsored social activities, IBMG recruitment activities, and timely completion of required course work.

4.4 PhD in Medical Neuroscience Program Curriculum
The Graduate Program leading to the Ph.D. in Medical Neuroscience curriculum is designed with required courses and flexible electives to meet the wide-ranging interests of the diverse scientific population, while at the same time providing a strong foundation in a number of core areas. The program consists of at least 90 credit hours. The average time to complete the degree is 5.5 years.
4.4.1 Required Coursework

Fall – Year 1: IBMG Shared Learning Experience
GRDM-G505  Responsible Conduct of Research (1 cr.)
GRDM-G700  Translating Foundational Science to Contemporary Knowledge (1 cr.)
GRDM-G702  Entering Biomedical Research (1 cr.)
GRDM-G715  Biomedical Science I – Biochemical Basis of Biological Processes (2 cr.)
GRDM-G716  Biomedical Science II- Molecular Biology and Genetics (2 cr.)
GRDM-G717  Biomedical Science III – Cellular Basis of Systems Biology (2 cr.)
GRDM-G718  Research in Biomedical Science Rotation 1 (2 cr.)

Spring – Year 1: IBMG Shared Learning Experience
Research Communication (choose from list below, 1 cr. each)
• COMM-C534: Distilling Your Message
• COMM-C533: Improvisation for Scientists
• ENG-W 533: Science Writing for Public Readers
GRDM-G718  Research in Biomedical Science Rotations 2 and 3 (2 cr. each)
GRDM-G507  Reagent Validation as a Means for Enhanced Research

Spring – Year 1: IBMG Shared Learning Experience
GRDM-G780  Foundations of Neuroscience (6 cr.)

Summer –Year 1: Medical Neuroscience Program
PHAR-F850  Experimental Design & Grant Writing (1 cr.)

Fall – Year 2: Medical Neuroscience Program & Completion of IBMG Requirement
GRDM-G855  Experimental Design & Research Biostatistics (1 cr.)

Major and/or Minor Program Requirements

Years 3+
• Students continue with coursework needed for program and minor
• Selection of research project
• Continued research activities
• Bi-yearly committee meetings
• Progression toward qualification exam leading toward dissertation/defense. Qualification exams should be completed the summer of Year 2.

4.4.2 Elective Courses
During the second year in the program, various departments and programs in the School of Medicine offer a number of elective courses. *Note that new elective courses are typically under development and students should consult with the program administrator on new course options. A partial listing of courses of potential interest to MedNeuro students follows below:
### IUSM Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MNEU-N880</td>
<td>Advanced Topics in Medical Neuroscience</td>
<td>(cr. hrs.)</td>
</tr>
<tr>
<td></td>
<td>• Principles of Neuroinflammation</td>
<td>(1)</td>
</tr>
<tr>
<td></td>
<td>• Experimental Methods and Animal Models for Neurological Disorders</td>
<td>(1)</td>
</tr>
<tr>
<td></td>
<td>• Synaptic Plasticity</td>
<td>(1)</td>
</tr>
<tr>
<td></td>
<td>• Translational Neuroscience of Neurodegenerative Diseases</td>
<td>(1)</td>
</tr>
<tr>
<td>ANAT-D 527</td>
<td>Neuroanatomy: Contemporary and Translational</td>
<td>(4)</td>
</tr>
<tr>
<td>GRDM-G 848</td>
<td>Bioinformatics, Genomics, Proteomics, and Systems Biology</td>
<td>(2-3)</td>
</tr>
<tr>
<td>PHAR-G 751</td>
<td>Advanced Concepts in Cytosolic and Nuclear Signal Transduction</td>
<td>(2)</td>
</tr>
<tr>
<td>GRDM-G 745</td>
<td>Fundamentals of Intracellular Signal Transduction</td>
<td>(2)</td>
</tr>
<tr>
<td>GRDM-G 761</td>
<td>Molecular and Cellular Physiology of Ion Transport</td>
<td>(1)</td>
</tr>
<tr>
<td>GRDM-G 817</td>
<td>Molecular Basis of Cell Structure and Function</td>
<td>(2)</td>
</tr>
<tr>
<td>GRDM-G 720</td>
<td>Stem Cell Biology</td>
<td>(2)</td>
</tr>
<tr>
<td>GRDM-G 727</td>
<td>Animal Models of Human Disease</td>
<td>(1)</td>
</tr>
<tr>
<td>GRDM-G 725</td>
<td>Gene transfer Approaches to Clinical and Basic Research</td>
<td>(1)</td>
</tr>
</tbody>
</table>

### IUPUI Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 54410</td>
<td>Sensory Systems</td>
<td>(3)</td>
</tr>
<tr>
<td>BIOL 56010</td>
<td>Clinical and Molecular Aspects of Neurodegenerative Diseases</td>
<td>(3)</td>
</tr>
<tr>
<td>BIOL 57100</td>
<td>Developmental Neurobiology</td>
<td>(3)</td>
</tr>
<tr>
<td>BIOL 57310</td>
<td>Stem Cell Biology</td>
<td>(3)</td>
</tr>
<tr>
<td>PSY 51800</td>
<td>Memory &amp; Cognition</td>
<td>(3)</td>
</tr>
<tr>
<td>PSY 60000</td>
<td>Statistical Inference</td>
<td>(3)</td>
</tr>
<tr>
<td>PSY 61500</td>
<td>Introduction to Behavioral Neuroscience</td>
<td>(3)</td>
</tr>
<tr>
<td>PSY 62200</td>
<td>Animal Learning</td>
<td>(3)</td>
</tr>
<tr>
<td>PSY-I 535</td>
<td>Clinical Neuroscience</td>
<td>(3)</td>
</tr>
<tr>
<td>PSY-I 545</td>
<td>Psychopharmacology</td>
<td>(3)</td>
</tr>
<tr>
<td>PSY-I 650</td>
<td>Developmental Psychology</td>
<td>(3)</td>
</tr>
</tbody>
</table>

### 4.4.3 Required Minor

The Graduate School of Indiana University requires completion of a minor. Minors are available in specific areas outside of neuroscience (PhD Minors: [https://medicine.iu.edu/education/graduate-degrees/phd/indianapolis/curriculum/](https://medicine.iu.edu/education/graduate-degrees/phd/indianapolis/curriculum/)); these typically have additional coursework (12 cr. hrs.) beyond the IBMG core and Medical Neuroscience requirements. However, it is also possible to elect to pursue the more general “Life Sciences” minor, which counts some interdisciplinary courses (Biomed I, II, and III) taken during the first year toward the minor requirement.

### 4.5 Grade/Credit Hours

Medical Neuroscience students are required to take all of the required courses with a grade of B or better and an additional hour of elective credits, totaling at least 30 didactic hours. Additional electives are recommended. The 30 didactic credit hours of this requirement must be from courses which either:

1. Letter grade assignment (“letter graded” courses) and be graded A-F by objective criteria, or
2) Designated by the Curriculum Committee as “approved pass/fail” graded courses (excluding seminars and journal clubs).

4.6 Academic Probation
Students may be placed on academic probation for the following reasons:
   1. GPA falls below 3.0
   2. Earning a grade below C+ for any course or earning a grade below B- for any required course
      ▪ The Graduate School considers any grade below C+ a failing grade and is not counted towards graduation. If a course offered by the MedNeuro program is required for any other degree program, a minimum grade of B- must be earned to count towards graduation.
      ▪ Faculty mentors should contact the Program Director as soon as possible in any of the above situations.

According to the University Graduate School Bulletin:

*The Dean may review a grade record at any time and may place a student on academic probation if the record justifies such action. When the grade point average of a student falls below 3.0 or the student is not making sufficient progress toward the degree, the dean will notify the student that he or she has been placed on probation. Unless the student brings this record up to a 3.0 grade point average or begins making satisfactory progress in the next semester of enrollment, the student will not ordinarily be allowed to continue in the University Graduate School.*

4.7 Seminars
The Stark Neurosciences Research Institute hosts weekly seminar every Thursday at noon. Speakers from all over the nation are invited to present their research at this series. All graduate students are required to attend the Thursday Stark Neuroscience seminars. Attendance at the seminars will determine the grade for Topics in Medical Neurobiology course (MNEU-N 801). Students are required to present their work at these seminars in the latter part of their graduate work.

Students are also expected to regularly attend the external speaker lunches, especially those relevant to the student’s thesis research. This is a vital component of their educational and scientific experience. In addition, all students are expected to regularly attend at least one of the journal clubs offered in the student’s individual research area.

4.8 Scientific Presentations
A critical objective of the program is to prepare students to effectively present their scientific results both orally and in a poster format. Attendance and presentation of work at national meetings is an expectation of the program. MedNeuro students are expected to present their work at the Gill symposium (IU Bloomington) and at the annual Greater Indiana Society for Neuroscience meeting. MedNeuro students will present posters at IBMG sponsored recruiting events. Students are expected to regularly present at journal clubs.

Students are expected to attend least one national meeting by the summer after Year 3 to make adequate progress in the program. The MedNeuro Administrative Office will be tracking this requirement.
5 PROGRESS TOWARDS THE DEGREE

5.1 Appointment of Major Advisor
The primary responsibility for choosing a mentor resides with the graduate student. First-year students are provided with a list of potential mentors from which they can choose. The student is responsible for arranging the rotation. If, for any reason, a student needs to replace a mentor, the TAC and the graduate program will assist the student in identifying a new mentor; however, the primary responsibility resides with the graduate student.

The following are required for laboratory assignment:

1) The student must have completed all laboratory rotation requirements, which includes at least one rotation in the lab to be assigned.

2) A signed application for placement must be completed, which also requires the signature of the appropriate department Chair (confirming commitment for financial support).

3) The program director and the Research Mentor/Major Advisor must sign the required graduate school paperwork accepting financial responsibility for the student. The mentor is responsible for the student’s stipend, tuition and fees (see also above; the mentor’s department is responsible for providing stipend in the event that the mentor cannot).

After completing three rotations, the student will identify a laboratory for their thesis research and discuss with the faculty mentor whether a placement is possible. In the event a student cannot be placed after 3 rotations, a forth rotation can be arranged in consultation with the Program Directors.

5.2 Extracurricular Obligations
Ph.D. students must be given sufficient time to participate in all training activities, including, but not limited to: preparation time for required examinations, attendance at Seminars, attendance at external speaker lunches, attendance of journal clubs, active participation in the Graduate Student Symposium and other local Neuroscience meetings (e.g., Gill Symposium, Greater Indiana Society for Neuroscience), student-sponsored social activities, IBMG recruitment activities, and timely completion of required course work. It is also expected that students will participate in all activities of the Medical Neuroscience Graduate Student Organization.

5.3 Thesis Research Advisory Committee (TRAC)
The Thesis Research Advisory Committee (TRAC) for each student consists of a minimum of 5 members: the student's Major Advisor, and at least four members of IUSM faculty, at least two of which must be primary members of the Stark Neurosciences Research Institute (https://medicine.iu.edu/research/centers-institutes/stark-neurosciences/faculty/). The chairperson of the TRAC committee cannot be the student’s Major Advisor. The TRAC is selected by the student in consultation with the mentor, must be appointed by the end of the second year, and must be approved by the Program Director.

The principle functions and responsibilities of each student's TRAC will include:

1) Administration and evaluation of the qualifying exam.
2) Adherence to policy guidelines and requirements for the MedNeuro program and the graduate school.
3) Solicitation and evaluation of the dissertation proposal (see below).
4) Giving advice, counsel, and guidance during all phases of the dissertation research.
5) Administering the "Final Doctoral Oral Examination" which constitutes the oral defense of the written Ph.D. dissertation.

Each student is required to meet with the TRAC at least twice each year to report on research progress and scheduled by the Program Coordinator in consultation with the student. The first meeting should occur shortly after admission to candidacy (e.g., passing qualification exam). It is the responsibility of the TRAC Chair and the student to insure compliance with this requirement. The committee meetings cannot be unreasonably delayed or canceled. Following each committee meeting, the Chair will complete a form that provides a summary of the meeting with particular attention to documenting specific decisions made regarding the research plan. The meeting summary is included in the student’s official program file. The committee must also verify that the student’s Individual Development Plan (IDP; see below) is reviewed yearly by the student and the mentor.

The TRAC Chair is responsible for monitoring the student’s progress and for notifying the Director or Co-Director of potential problems as soon as they become evident. If sufficient resources and mentoring are being provided and the graduate student continues to fall behind, then the Program Director should be notified immediately. A remediation plan with clear guidelines then must be developed by the TRAC and submitted to the Program Director for record-keeping purposes. Failure by the student to correct the problem(s) must be documented through the Program Director. Failure by the student to correct the problem(s) may result in the thesis project being terminated by the Medical Neurosciences Program with or without a terminal master’s degree, depending upon the actual progress made. If Program determines that insufficient resources and/or mentoring are being provided, a remediation plan must be developed in conjunction with the TRAC, the Director, and Co-Director. Failure of the mentor to correct the problem(s) can be grounds for removal of the mentor from the Training Faculty.

5.4 Time to Degree
The national average time to degree in Neuroscience and other Biomedical graduate programs is approximately 5.5 years from the start of graduate study until award of the Ph.D. It is our expectation that students in the MedNeuro program will graduate in Year 5. MSTP students are expected to complete their graduate work no later than Year 4 following their admission to the MedNeuro graduate program. It is the responsibility of the student and the TRAC to ensure completion of the Ph.D. within these timeframes.

5.5 Student Academic Progress
Per the University Graduate School, students are responsible for monitoring their own progress towards candidacy and towards their thesis defense. Consult the IUPUI Graduate Office’s Ph.D Progression Checklist for the latest requirements: http://graduate.iupui.edu/forms/index.shtml

5.6 Individual Development Plan
The NIH has stipulated that all trainees must have an IDP. By the end of Year 2, all MedNeuro students must file an IDP with Program, and review it annually with their faculty mentor. IDP templates are available from Lauren Easterling, Director of Trainee Services (Phone: 317-274-3929 Email: easterl@iu.edu). A copy of the IDP will be placed in the student’s file. Yearly documentation of IDP review must be filed with Program Administration.
6 QUALIFYING EXAMINATION

6.1 OVERVIEW
In the Indiana University system, the graduate qualifying examination is the gateway to candidacy for the Ph.D. degree. All students, including those in Medical Neuroscience, must pass the qualifying examination to be admitted to candidacy, after which they finish their dissertation.

In order to qualify to take the qualifying examination the student must have received passing grades ("B" or better performance) in the required and elective coursework.

The qualifying examination will be carried out during the summer after the end of the student’s second year in the program. It is expected that the students will have completed the grant writing course ‘Principals of Experimental Design (F850)’ prior to the examination. In addition, students are also expected to have attended the ‘Qualifying Examination Workshops’, provided by Dr. Yoder during the Spring semester. The student is responsible for assembling the examination committee in consultation with the thesis advisor, for meeting all suggested deadlines related to the exam process (see below), and for scheduling the oral exam.

The examination comprises a written and oral component. The exam is based on the NIH NRSA F30/31 format, and should include the Specific Aims, Research Strategy, and Bibliography (see also below). The content should relate to the student’s planned research topic. There are three basic stages to the exam process:

1) The examination committee must approve the Specific Aims page of the document prior to the student completing the rest of the written document (i.e., Research Strategy and Bibliography). Evidence that the committee approved the Aims must be submitted to the Training and Advisory Committee. This can be either formal (written documents) or informal documentation (e.g., text within emails).

2) Subsequently, the Examination committee must approve the written document prior to scheduling the oral examination. The document does not have to be “perfect”, but it should not contain any “fatal flaws.” (This is why approval of the Aims page is crucial). Again, formal or informal documentation that the committee has approved the full written document should be submitted to the Training and Advisory Committee.

3) After the Examination committee has approved the written exam, the oral exam should be scheduled. The goal is to pass all components prior to the start of classes in the Fall semester. The Examination Committee will use the oral exam to query the student on the extent of both their knowledge of their specific project, as well as their fundamental knowledge of neuroscience and experimental design. The Examination Committee will judge the oral examination as a pass, conditional pass, or fail. The Chair will write a summary of the oral examination to be communicated to the TAC committee, the student, and members of the Examination committee. In addition, the IU Graduate Examination Evaluation forms will be completed by the chair (attached below).

Students receiving a conditional pass will be advised by the committee on areas needing improvement and a time frame for revision of the document and/or oral reexamination. (The prior steps should preclude any major revisions of the document). If a student receives a consensus failing grade, the Examination Committee members will report the outcome to the MedNeuro Training and Advisory Committee and a decision on how to proceed will be made. A student can be dismissed from the program should they receive a second failure on the resubmitted grant proposal or oral defense.
However, the TAC will be required to meet with the student to determine if a third submission is advisable or whether they recommend separation from the program.

The recommended timeline is as follows:

- **January → March 30**
  - Mentor and committee agree on general project idea (draft of Specific Aims)
  - A formal committee meeting is not required, but this context can be helpful and efficient
  - Must submit evidence to Medical Neuroscience Program that the committee has approved project.
- **January → June 1**
  - Write grant proposal.
- **June 1 – July 15**
  - Submit grant to committee.
  - Give the committee 2 weeks to read, review, and return any critical feedback to the student.
  - The committee must approve the written version before oral exams can be scheduled.
  - Must submit evidence to Medical Neuroscience Program that the committee has approved the written document.
- **July 15- July 30**
  - If the committee does not approve the written document, the student should revise as requested. (Note that the Specific Aims approval process is designed to prevent this contingency).
- **August**
  - Schedule oral defense of the qualifying examination.

### 6.2 EXAMINATION COMMITTEE

The examination committee will ideally comprise the student’s prospective thesis advisory committee, although this need not be the case. The examination committee will be selected by the student and his/her mentor, and will be comprised of a minimum of 5 faculty members, at least three of which are approved SNRI faculty. The examination committee Chair must be someone other than the Research Mentor/Major Advisor. The committee must include one member of the Training and Advisory Committee, and the overall composition must be approved by the Program Director.

**Responsibilities of the Examination Committee Chair:**

The chairperson is responsible for conducting the entire examination process, and is the primary contact between the student and the examination committee. Following submission of the Specific Aims by the student, the chair will poll the committee on their acceptability and if revisions are required, will oversee the review of a revised set of Aims. Upon receipt of the written examination, the committee will read the document and communicate with the chair regarding its acceptability. If the document is acceptable to the majority of committee members, the chair will then inform the student and approve moving forward with the oral defense. The Chair is responsible for ensuring that the student is meeting all submission deadlines in a timely manner, and for ensuring that committee members are participating in a critical evaluation of the student’s efforts.
Upon completion of the oral examination, the committee will vote on whether the student has passed the exam. All committee members must vote. The chair is responsible for completion of the required forms and communicating the outcome to the student.

6.3 QUALIFYING EXAMINATION-WRITTEN EXAMINATION

The written examination format consists of writing an NIH style grant proposal, ideally focused on the student’s thesis project, followed by an oral defense of the proposal. The written examination format is that of a National Institutes of Health *Kirschstein National Research Service Award* pre-doctoral fellowship (F30/F31). The specific focus of the proposal is intended to be that of the student’s thesis project, the examination committee at its discretion, may alter, restrict or narrow the subject area to be addressed. It is anticipated that the written document will provide the basis for a formal F30/F31 NRSA submission in Year 3 for those students who are eligible.

The examination will be initiated by the student writing a ‘Specific Aims’ page, no longer than 1 page, and submit this document to the Examination Committee. The Committee will evaluate the aims of the proposal and the Chair will poll the committee on its suitability within 2 weeks of its submission. The Committee will advise the student on any suggested revisions to the Aims. The Committee should request revisions based on identification of major, fatal flaws with the hypothesis and hypothesis testing, and avoid hindering the exam progress based on details not directly related to the student’s comprehension of the material.

After approval of the Aims page, the student will then write a proposal describing the Research Strategy (See suggested timeline above). The written document should be submitted to the committee, and the committee given at least two weeks to approve the written document. The threshold for acceptability should be overall coherence of the project and general reasonableness of the experimental design. It is expected that the document will not be perfect, and that there will be elements within the document that will provide opportunities for inquiry during the oral examination. The Examination Committee will have at least 2 weeks to read the application, and the Chair will poll the committee on its acceptability prior to the oral examination. If a favorable decision is rendered, the oral examination will be carried out. If the written document is unsatisfactory, the examination will be postponed until the Examination committee (in consultation with the TAC) decides how to proceed. Again, the process is designed to avoid major revisions at the Research Strategy stage.

The NIH format requires a Specific Aims page and no more than 6 pages for Background/Significance, Preliminary Data and Experimental Approach. References are not included in the 6 page limit. Detailed instructions can be obtained by following the [SF424 (R&R)](http://grants.nih.gov/training/nrsa.htm) link on the NRSA webpage. The format requires ½” margins, Arial 11 point, single spaced. Proposals that do not adhere to the NIH requirements are unacceptable.

The Research Strategy should be exclusively the intellectual output of the student, and should integrate information from various sources to create a novel and innovative research proposal. An essential goal of this examination is to demonstrate the ability to critically examine and synthesize current data and conceptual issues in the chosen topic, and to formulate an experimental plan to address these critical issues and to identify current limitations in experimental methodologies or experimental approaches. However, although it is expected that the student’s PI will help shape the overall research question, the PI is to give only limited advice on design and execution of the overall
The proposal should contain the following sections:

- **Specific Aims (one page limit):** What you intend to do. List three to four objectives and describe concisely and realistically what the specific research described in this proposal is intended to accomplish and what hypotheses are to be tested.

- **Research Strategy (six page limit):** The following sections should be included:
  - *Significance and Innovation sections* (no more than 1.5 pages, total). The significance section is where you concisely and critically evaluate the current state of knowledge of the field (what has been done, what we know), backing up your claims with appropriate literature citations. You should describe what the critical knowledge gap in the field is (what we don't know), and how and why your project is important for filling that knowledge gap (what will you do that will be important to the field, that will move the field forward conceptually). The Innovation section is your opportunity to describe aspects of your project that are unique, new, or otherwise different from what has been done before. Innovation can take several forms: if you must develop a new method or model for your experiments, this could be methodological or technical innovation. A new idea or way of looking at the problem can be conceptual innovation. A new scientific design approach could be innovative conceptually and/or methodologically. Innovation can overlap with Significance if your hypothesis that you are testing is unique or new.
  - *Approach (remainder of the 6 pages).* Have a separate section for each Aim. Restate each Aim at the beginning of section. Describe in logical detail the experiments and procedures to be used to test your hypotheses. Use literature citations to justify your choices, and to provide evidence for why the approach is feasible. Include the means by which the data will be collected, analyzed, and interpreted. If you have preliminary data available, include it where appropriate to support the feasibility of your idea and experimental design and/or to demonstrate you (or the lab) are capable of carrying out the experiments. Discuss potential difficulties and limitations of the proposed experiments and alternative approaches to achieve the aims (that is, what would you do if something doesn’t give the result you expect). This section should also contain a description of the expected and unexpected outcomes of the proposed research. Finish this section with a Future Directions paragraph (what is the next logical set of hypothesis testing/experiments you would do if you could).

- **Reference List (no page limit):** Use the *Journal of Neuroscience* format. It is highly recommended that you use a reference manage like EndNote or similar software to manage the in-text citations and generate a bibliography.
6.4 QUALIFYING EXAMINATION- ORAL PROPOSAL DEFENSE
Following successful completion of the Written Qualifying Component, the student will orally defend the application to the Examination Committee. The oral exam will be scheduled by the student on establishing the availability of the faculty. Given that the examinations will occur during the summer, it is the responsibility of the student to work in advance to schedule the examination.

The student is required to submit the written research proposal no less than 2 weeks before the oral examination. During the oral exam, the student will be required to present a 20 minute power point summary describing the background, significance, preliminary data, and experimental design of the written research proposal, using the slides (and white board, if desired). The committee may ask clarifying questions during the course of this summary presentation; however, the bulk of the questioning should be held until after the presentation. Following the oral presentation of the proposal, the floor is open to the committee to ask any questions about the proposal and/or any topics in basic neuroscience, as directed by the Chair. It is recommended that the Chair propose a questioning strategy prior to the oral exam.

The student should be an expert in the area of the proposal and should also be prepared to answer questions on general scientific knowledge and neuroscience concepts garnered from the didactic course work. Good preparation for the exam includes reading relevant literature in the field, paying particular attention to the details of the experiments to be performed and the reasons why these experiments are being proposed, and reviewing all course material taken during the first two years of graduate school (including IBMG coursework).

An essential goal of this examination is to demonstrate the ability to critically examine and synthesize current data and conceptual issues in the chosen topic and to formulate an experimental plan to address these critical issues and to identify current limitations in experimental methodologies or experimental approaches.

In particular, the student should be prepared to answer questions dealing with the following:

- Details of the experimental techniques to be used for the proposed research. If techniques are cited in the proposal, the student should be able to explain them in detail and to draw and diagram the expected results.
- The biological significance of the project.
- The existing body of knowledge, including work done in different experimental systems relevant to the project. Relevant details of any literature should be cited in the proposal.
- Difficulties and limitations of the proposed procedures.
- Alternative approaches to achieve the specific aims (how to approach the problem if the data do not yield the result you expect).
- Possible outcomes of the proposed experiments and the next steps to be taken in each case.
- Specific details of the biological or theoretical process being studied.
- Future directions of the proposed research beyond the specific aims.
- Other topics related to the proposal, especially those covered in the student's course work.
- General knowledge of Neuroscience.

Exam outcome is determined by majority vote of the committee. All committee members must vote, abstentions are not allowable.
The possible outcomes are:

1. Pass. Successful completion of the oral component of the exam completes the candidacy examination.

2. Conditional Pass: If a conditional pass is chosen, a discussion by the Committee will determine the conditions. A conditional pass should not be given if the student is expected to take another oral exam, even if it is to be more limited in scope than the original exam. (Said another way, if the committee wants a second oral exam, this is technically a failure; see #3, below). A conditional pass can take many forms. Primarily, it requires additional work by the student to address particular deficiencies.

These additional requirements may include:

- Rewriting the whole proposal to address any deficiencies in knowledge and/or experimental design that emerged during the oral examination.
- Rewriting a portion of the proposal
- Writing a second proposal on a subset of the original aims (for example, if the project was too large in scope).
- Taking and passing a course(s) in the area(s) of weakness.
- Doing selected reading(s) with members of the committee or others in the areas of weakness.
- Other conditions may be imposed as deemed appropriate by the committee.

3. Failure: Any request by the committee for a retake of the oral exam is considered a failure. Upon failure, the committee may recommend re-examination or immediate dismissal. Re-examination may entail preparing a new proposal and repeating the entire process, a re-defense of essentially the same proposal, or a re-examination that is more limited in scope than the first exam. The timetable for such re-examination can be flexible and should be determined by the committee in consultation with the student and advisor, but should normally be taken within one full term of the original examination date.

In the event of a second failure, the student will be recommended for dismissal by the program. The student may appeal the dismissal.

Deadline for Completion of the Qualifying Examination

If a graduate student has not completed their qualifying examination by the beginning of their third year in the program, then at that time they will lose their stipend support, regardless of source, and their status as a full-time graduate student in the Medical Neurosciences program will be terminated. This deadline may be extended (a) in cases of extenuating circumstances, and (b) in the event a student needs to retake the qualifying examination. In the case of extenuating circumstances, the student must request the extension in writing to the TAC before the start of the third year.

7 DISSERTATION PROPOSAL & DEFENSE

7.1 Publication Requirement
The program requires the student to have an accepted first author paper prior to scheduling the Ph.D.
defense. The work is required to appear in a peer-reviewed journal with a rigorous scientific review (e.g. not journals with only a technical review standard).

7.2 Dissertation Proposal and Defense
The written examination will provide the basis of the Dissertation Proposal. It is the responsibility of the committee to provide ongoing constructive criticism, guidance, and often technical support throughout the dissertation research process to insure that the student has a good opportunity to succeed with the project. It is the obligation of the student and the mentor to notify members of the TRAC and the Program Director of significant changes in the scope or direction of the research project in a timely manner. Major changes must be approved by the TRAC.

Upon the completion of their thesis research, and with the permission of the TRAC, each student will write a doctoral dissertation to submit to the TRAC for evaluation and approval. The appropriate format for the written dissertation is described by the IUSM graduate school. The document may be a "standard" dissertation which consists of Introduction, Methods, Results, Discussion, and References sections. An alternative format is the submission of several manuscripts (or published papers) developed during the course of the research with an overall Introduction section and a General Conclusions section.

7.3 THE Ph.D. FINAL EXAMINATION (DEFENSE)
1) Under the supervision of the TRAC committee, the candidate prepares a dissertation embodying the results of their research efforts related to their Ph.D. project.

2) The candidate, working with the TRAC, sets a date for a dissertation defense. Forty (40) days before the date, the student must initiate a Dissertation Defense Announcement eDoc via One.IU. The student’s Nomination of Research Committee eDoc must have been approved at least six (6) months prior to the date listed on the Announcement eDoc. This eDoc must be approved thirty (30) days before the scheduled defense.

3) Four weeks prior to the time of the final oral exam, the student must present one copy of the dissertation to the Graduate School and distribute copies to the examining committee members. The committee will be polled by the chair of the examining committee at least ten days before the proposed date of the examination to determine the acceptability of the dissertation.

4) The final examination is held no later than ten days before graduation.

5) It is expected that the student present a public seminar on their thesis research on the same day of, and immediately preceding, the thesis defense.

6) At least four of the five committee members must agree that the student has passed unconditionally. The TRAC chair will sign the title sheet and the student shall be recommended for award of the degree.

7) Approval of the Dissertation and its oral defense constitutes passing the Final Doctoral Examination of the Graduate School.
8 FORMS

8.1 Phase 1: From Student’s Matriculation to Qualifying Exam

Advisory Committee

By the end of their first year in Graduate School, all graduate students are required to have an Advisory Committee (the TRAC), which must meet with the student once per year to review his/her progress.

- **Required Forms**
  - Appointment of Advisory Committee
    - [Link](http://graduate.iupui.edu/forms/index.shtml)
    - *This form is for departmental use only but must be filed with student’s advisor*
  - Request for Change of Advisory Committee Members
    - [Link](http://graduate.iupui.edu/forms/index.shtml)
    - *This form is for departmental use only but must be filed with student’s advisor*
  - PhD Program Selection Form (faculty mentor agreement)
    - [Link](http://graduate.iupui.edu/forms/index.shtml)
    - *Form must be filed with IUSM Graduate Division Office (MS-207; 274-3441)*

Lab Rotations

*All IBMG students are required to complete three lab rotations by enrolling in GRDM-G718.*

- **Required Forms**
  - Lab Rotation Mentor Agreement Form
    - [Link](https://iu.box.com/v/IBMGForms)
    - *Form must be filed with IUSM Graduate Division Office (MS-207; 274-3441)*
  - Rotation Grade/Faculty Evaluation – GRDM-G718 Rotation Form
    - [Link](https://iu.box.com/v/IBMGForms)
    - *Form must be filed with IUSM Graduate Division Office (MS-207; 274-3441)*
  - Student Evaluation of Faculty and Self-Assessment – GRDM-G718 Rotation Form
    - [Link](https://iu.box.com/v/IBMGForms)
    - *Form must be filed with IUSM Graduate Division Office (MS-207; 274-3441)*

Qualifying Exam and Candidacy

*After a student completes his/her required coursework and has selected a research focus, the TRAC will administer the Qualifying Exam and nominate to candidacy.*

- **Required Forms**
  - PhD Qualifying Exam Report
    - [Link](http://graduate.iupui.edu/forms/index.shtml)
    - *Form must be filed with IUSM Graduate Division Office (MS-207; 274-3441)*
  - Nomination to Candidacy for the PhD Degree – *must be approved at least 8 months before graduating*
    - [Link](http://graduate.iupui.edu/forms/index.shtml)
    - *eDoc submission only – must be filed by student*
  - Minor in PhD Program
    - [Link](http://graduate.iupui.edu/forms/index.shtml)
    - *Form must be filed with IUSM Graduate Division Office (MS-207; 274-3441)*
  - Plan of Study for PhD Template
8.2 Phase 2: From Student’s Qualifying Exam to Graduation

Research Committee
After passing the Qualifying Exam, the student will select a faculty mentor and TRAC, which must meet with the student at least annually to review his/her progress (Research Committee Guidelines at http://graduate.iupui.edu/forms/index.shtml).

- **Required Forms**
  - Nomination of Research Committee – *must be approved at least 6 months before defense*
    (http://graduate.iupui.edu/forms/index.shtml)
  - eDoc submission only – *must be filed by student*
  - Request for Change of Research Committee Members
    (http://graduate.iupui.edu/forms/index.shtml)
    Form must be filed with IUSM Graduate Division Office (MS-207; 274-3441)

**Dissertation Defense**
At least **40 days prior** to the scheduled defense of the dissertation, the candidate must submit to the University Graduate School a one-page announcement of the final examination.

- **Required Forms**
  - Defense Announcement
    (http://graduate.iupui.edu/forms/index.shtml)
  - eDoc submission only – *must be filed by student*

**Dissertation Submission**
Degrees are conferred 30 days following the submission to the Graduate School of the final approved dissertation with completed signature page (PDF or bound copy). This checklist contains additional useful information about degree requirements and timeline for completion.
http://graduate.iupui.edu/forms/index.shtml

8.3 Miscellaneous Forms
The following forms are used for special situations.

- **Graduate Credit Transfer**
  (http://graduate.iupui.edu/forms/index.shtml)
  Form must be filed with IUSM Graduate Division Office (MS-207; 274-3441)
- **Graduate School Course Substitution**
  (http://graduate.iupui.edu/forms/index.shtml)
  Form must be filed with IUSM Graduate Division Office (MS-207; 274-3441)
- **Course Revalidation** (for courses completed more than 7 years before the Qualifying Exam)
  (http://graduate.iupui.edu/forms/index.shtml)
  Form must be filed with IUSM Graduate Division Office (MS-207; 274-3441)
- **Graduate Student Leave of Absence**
  (http://grad.medicine.iu.edu/resources/for-students/forms/)
Form must be filed with IUSM Graduate Division Office (MS-207; 274-3441)

- **Graduate Student Return from Leave of Absence** (http://graduate.iupui.edu/forms/index.shtml)
  Form must be filed with IUSM Graduate Division Office (MS-207; 274-3441)
- **Graduate Program Update** (to reactivate students out more than 12 months) (http://graduate.iupui.edu/forms/index.shtml)
  Form must be filed with IUSM Graduate Division Office (MS-207; 274-3441)
- **Termination of Study** (http://graduate.iupui.edu/forms/index.shtml)
  Form must be filed with IUSM Graduate Division Office (MS-207; 274-3441)

### 8.4 Useful Links

- **IUSM Graduate Division Office** – [http://grad.medicine.iu.edu/](http://grad.medicine.iu.edu/)
- **IUPUI International Affairs Office** – [http://international.iupui.edu/](http://international.iupui.edu/)
- **IUPUI Registrar’s Office** – [http://registrar.iupui.edu/](http://registrar.iupui.edu/)
- **IUPUI Bursar’s Office** – [http://www.bursar.iupui.edu/](http://www.bursar.iupui.edu/)
- **Listing of Graduate Faculty** – [http://graduate.indiana.edu/faculty-staff/membership.shtml](http://graduate.indiana.edu/faculty-staff/membership.shtml)
- **Medical Library** - [https://medicine.iu.edu/education/medical-library/](https://medicine.iu.edu/education/medical-library/)
- **Mental Health Services** - [https://medicine.iu.edu/education/mental-health-services/](https://medicine.iu.edu/education/mental-health-services/)

### 9 CODE OF CONDUCT

#### 9.1 IU Code of Conduct

The purposes of Indiana University include the advancement of knowledge, the pursuit of truth, the development of students, and the promotion of the general well-being of society. As a community, we share a dedication to maintaining an environment that supports trust, respect, honesty, civility, free inquiry, creativity, and an open exchange of ideas.

Individual rights are best protected by a collective commitment to mutual respect. A student who accepts admission to Indiana University agrees to:

- Be ethical in his or her participation in the academic community
- Take responsibility for what he or she says and does,
- Behave in a manner that is respectful of the dignity of others, treating others with civility and understanding, and
- Use university resources and facilities in appropriate ways consistent with their purpose and in accordance with applicable polices.

Every Indiana University student is responsible for reading and understanding this Statement, as well as other expectations identified by individual schools or organizations relevant to an academic major, professional field, or on-campus residence. This Code of Student Rights, Responsibilities, and
Conduct is intended to identify the basic rights, responsibilities, and expectations of all students and student groups to serve as a guide for the overall student experience at Indiana University.

Please see the full IU Code of Student Rights, Responsibilities, and Conduct (http://studentcode.iu.edu/index.html)

9.2 IUSM Honor Code (https://medicine.iu.edu/about/policies-guidelines/honor-code/)
Embarking on a career in the life sciences and health care professions means accepting the responsibilities and unique privileges of these professions. These include self-monitoring and self-governance, and the responsibilities for these professional duties begin the moment that an individual starts medical school or graduate school. I understand that it is a great honor and privilege to study and work in the health care profession.

As a member of the Indiana University School of Medicine community, I promise to uphold the highest standards of ethical and compassionate behavior while learning, caring for others, performing research, and/or participating in educational activities. I do so according to the following tenets that will guide me through my career. I will strive to uphold the spirit and the letter of this code during my years at Indiana University School of Medicine and throughout my career in the health professions.

Honesty
- I will maintain the highest standards of honesty.
- If engaged in research, I will conduct these activities in an unbiased manner, report the results truthfully, and credit ideas developed and worked on by others.
- If engaged in patient care, I will be considerate and truthful, and will accurately report all historical and physical findings, test results, and other pertinent information.

Integrity
- I will conduct myself professionally.
- I will take responsibility for what I say and do.
- I will recognize my own limitations and will seek help when appropriate.

Respect
- I will respect the dignity of others, treating them with civility and understanding.
- I will contribute to creating a safe and supportive atmosphere for teaching and learning.
- I will regard privacy and confidentiality as core obligations.
- I will not tolerate discrimination.

Indiana University School of Medicine promises to create a professional environment that fosters excellence, abhors intolerance, and values each individual’s unique contribution to our learning community.

Where to Report Honor Code Violations
All members of the IU School of Medicine community are expected to uphold the tenets of the Honor Code. To maintain the highest standards of professionalism, IU School of Medicine responds in a systematic manner to incidents of student mistreatment and violations of the Honor Code and Teacher-Learner Conduct Policy. IU School of Medicine students or faculty who believe they’ve experienced or witnessed an honor code violation are strongly encouraged to report it. The primary and preferred method of reporting mistreatment or a professionalism issue is through the online IU School of Medicine Ombuds Contact Form. The Ombuds will respond within 3-5 business days to request for an initial consultation.

9.3 Exemplar of Professionalism Honor Roll

IU School of Medicine has an extraordinary community of colleagues, and the Exemplar of Professionalism Honor Roll is an exciting new award to recognize those at the school who embody the core values of excellence, respect, integrity, diversity and cooperation. Celebrating positive role models who uphold the IU School of Medicine Honor Code in their daily interactions, the Exemplar designation is designed to recognize faculty, residents, fellows, students and staff members.